
The Integrated Hardware/Software Sneak Analysis Approach

Henry. D. Valdez, BS EE; Independent Design Analyses, Inc.; Houston, Texas

Keywords: Sneak Analysis (HW / SW SA), Fault Tree Analysis (FTA), Failure Modes and Effects
Analysis (FMEA), Criticality Analysis, Network Trees

Abstract

The primary function of Sneak Analysis is the
detection of unexpected modes of operation in
hardware and software systems. These
unplanned modes of operation are not failure-
initiated and are called sneak conditions. These
conditions are characterized by their random
nature and ability to escape detection during the
most rigorous of standardized system tests.
Sneak conditions can cause improper operation,
loss of system availability, program delays, or
even death or injury to personnel.

Regardless of the development methodology or
design phase, sneak conditions have been
uncovered. The benefits of improved safety,
reliability, and reduced life cycle costs gained
from a properly executed Sneak Analysis have
been demonstrated time after time. Sneak
Analysis has helped reduce schedule risks and
costs by detecting hardware and software errors
before test or occurrence of the condition, by
recommending corrections to the design, by
reducing retest situations, and by reducing
maintenance and logistics costs.

This paper will explain the state of the Integrated
Hardware/Software Sneak Analysis technique
from the development of the Baseline Analysis
Tools to clue application and through the
completion of the integrated analysis phase.
Also, the advantages of integrating Sneak
Analysis with other design and safety analyses
will be discussed, such as an integrated
Hardware/Software Fault Tree Analysis (FTA),
and a Hardware/Software Failure Modes, Effects
and Criticality Analysis (FMECA).

Introduction

The Sneak Analysis provides an examination of
the non-failure domain of the system’s hardware
and software under analysis. This paper will be
separated into five sections which includes some
sneak analysis background information, the
Integrated Hardware/Software Sneak Analysis

Approach (which includes the development of
the Baseline Analysis Tools), the integration of
HW/SW SA with FTA, the integration of
HW/SW SA with FMECA, and conclusions.

Background

Numerous combinations of static and dynamic
inputs are possible in even relatively simple
circuitry. This large number of combinations
becomes very difficult to evaluate or test.
Avoiding the inherent shortcomings of
traditional tests and simulations, Sneak Analysis
does not depend upon varying inputs and then
checking the outputs. Instead, Sneak Analysis in
general, involves the recognition of specific
topological patterns, applying sneak clues, and
determining which input combination (either
static or dynamic) is required for an undesirable
output. This has evolved over years of Sneak
Analysis development as shown in table 1.

Power and Control System Relay Logic
Software Assembly Language
Digital Circuits
Analog Circuits
Hybrid Circuits
High Level Software languages
Integrated Hardware/Software
Programmable Array Logic
ASICs
Multiple Analysis Integration

Year
1967
1972
1975
1976
1978
1984
1986
1987
1989
1994

Types of
Sneak Clues
Topological
Topological,
Functional,

Technological

IDA Proprietary

Table 1 - Advancements in Sneak Analysis

Sneak Analysis is also unique from the design
process in that it uses different tools (network
trees, forests, and clues) to find a specific type of
problem. The network trees and forests, which
are part of the Baseline Analysis Tools, are
topological representations of the actual system.
Each network tree represents a subfunction and
shows all inputs that may affect the subfunction
output. Forests are constructed by combining the
network trees that contribute to a particular
system output. A proper forest shows a system
output in terms of all of its related inputs. These
along with others become the Baseline Analysis
Tools and the process is shown in figure 1.

Sneak clues are visual topological, functional or
technological keys identifiable on the trees and
forests. If a clue applies, the combination of
inputs that cause a potential sneak condition are
determined. These are further investigated to
validate or invalidate the potential sneak
condition. By contrast, simulation and testing is
unlike clue application, because they are limited
to remaining within the specified procedures or
mission profiles, and therefore may not reveal
sneak conditions.

Integrated Hardware/Software Sneak Analysis

Sneak Analysis is performed in four phases: (1)
data preparation, (2) network tree construction,
(3) clue application, and (4) final report
preparation. The first two phases are a major
part of the creation of the Baseline Analysis
Tools. Generally, reporting of Sneak Conditions
and Design Concerns occur throughout the first
three phases of the analysis. The overall process
flow is shown in figure 2.

Customer Delivery

Receipt of
CustomerData

Additional
Data or

Questions

Process Data for
Tree Construction

Construct Trees
&Forests

Analysis & Clue
Application

Final
Report

Generate
Discrepancy

Reports

Data
Review

Telecon/Data
Request

No

Yes

Generate
Discrepancy

Reports

Generate
Discrepancy

Reports

Generate
Discrepancy

Reports

Figure 2 - Sneak Analysis Process Flow

Data Preparation: During this phase the
hardware and software data received is compared
to contractual requirements as a preliminary
determination of completeness. Revision
numbers are checked on all drawings and
software listings to assure the analysis will be

Baseline
Analysis

Tools

Data
Review
Data

Review

Network Tree
and Forest

Construction

Network Trees

Forests

Indexed
Data List

(IDL)

POD

Wirelists

Schematics

Parts Lists

System Docs.

SW Listings

System
Block
Diagrams

Data Review
Connects data end to end
Identifies missing data
Forms Indexed Data List

- Partitions Circuitry or Code into Topological patterns
- End-to-end Connectivity achieved through cross-references
- Trees grouped by function to form topological forest

Baseline Analysis Tools
System Decomposition achieved by
generating Network Trees, Forests and POD

Customer Data

Parts Specs
Sheets

Cross-Reference
Tables

 RBDA
 HW/SW FMEA
 Maintainability
 Hazard Analysis
 Quality Assurance
 Fault Tree Analysis
 HW/SW I/F Analysis
 Worst Case Analysis
 Traceability Analysis
 Reliability Prediction
 HW/SW Sneak Analysis
Test Optimization Analysis

Figure 1 - Baseline Analysis Tool Process

performed on the correct versions. Any
discrepancies are reported to the technical
interface via teleconferences. All the data is
filed for easy access by the analysts, and for
confirmation by the customer as means of
configuration control.

Network Tree And Forest Construction: Design
data are set up for the design and manufacturing
process can hide sneak conditions. Assembly
drawings, Schematic and Parts Lists depicting
electronic circuit cards are really intended for the
manufacture of the circuit card, thus design
documents hide the sneak conditions by
displaying many different system functions on
many styles of documents from many different
vendors. Coupling these facts with the
hardware/software and software/software
interfaces, reveals that many sneak conditions
are possible and very difficult to uncover using
traditional analysis or testing techniques such as
design/code inspections or "test to requirements"
methodologies.

 The difficulty in finding sneak conditions is also
a result of the combination of events that it takes

to cause the sneak condition. These events are
usually not normal operating conditions and are
difficult to find by testing. However, network
trees and forests enable reliable detection of
sneak conditions.

Hardware network trees show all the components
and their connectivity. Each network tree is

constructed in a topological manner: components
and nodes are arranged so that current or logic
flow is from top to bottom and signal or data
flow is from left to right. Electronic data is very
useful for decreasing the time in network tree
and forest construction. The CAD net-lists
and/or wire-lists are searched for all the
connectivity at each node including connecting
the signals between circuit cards.

Electrical current flow and system data flow
between individual network trees are maintained
through cross-references. These cross-references
are used to link network trees into network
forests, which are described below and can also
include cross-references to software trees. The
cross references are maintained in an electronic
database which allows all analysts to have the
connectivities of all the network trees. Each
network tree has a single output, and all inputs
that may affect that output are shown on that
network tree. An example hardware tree is
shown in figure 3. It should be recognized that
this network tree integrates circuitry on multiple
circuit boards, internal to an ASIC, a
motherboard, and several cables.

Software network trees show logic paths and
instructions for a given portion of software code.
Decision points and program loops are clearly
shown on the network tree. An example
software network tree is shown in figure 4. Each
variable in the tree is cross-referenced to the
network tree(s) where that variable is defined.

C

RN

SE

SD

D
Q

A

B A
C

A
B
C

A

B

X:121

X:98

X:70

X:14
X:14

X:3

X:1

X:1

X:1

X:1

X:1
X:1

X:1

X:3

X:3
X:3

X:3
X:3

X:25
VREG

S1
Impact SW

E4

C6
0.01uF

X: 89

Clock

R22
1K

R19
100K

X:1

P1/11
IMPACT

9 Sense

A

B

X:3

X:1

U8
Delay Module

ASIC

SCE

smode

RESET

F/B
Volts

Enable
X:18

18

ASSY CARD A

P101/7

Impact
Det

CONTROL ASSY

aa21

aa21 or21
inv

aa31

U6

12345678

A

B

C

D

TITLE

A

B

C

D

12345678

Inc.

SIGNATURES DATE

DR

QC

 Independent Design Analyses, Inc. Houston,

Texas

QA

QE

SHEET
 SYSTEM 1

TREE NO.
 88

X:30

Impact Logic Sense

7474

C
C

C

CC

Figure 3 - Example Hardware Tree

Cross-references are also maintained in an
electronic database similar to the hardware,
which can also cross-reference to a hardware
network tree. Therefore, data flow is maintained
and is traceable through the software and to its
associated hardware.

Cross-references between label definitions and
references, and between subroutines/modules
and their calls, are included in the electronic
database so that program flow can also be traced.

System level program flow is shown through the
use of the Program Operations Diagram (POD).
The POD clearly shows the interface of each
software subroutine/module as well as all
possible hardware/software interfaces. Critical

functions identified within a system can be
highlighted on the POD and used by the analyst
as a road map to assist in performing the
Integrated Sneak Analysis. An example POD is
shown in figure 5.

Another unique Sneak Analysis tool is a network
forest. A network forest is a topological
representation of a system output in terms of all
of its inputs. A block is shown for each network
tree and interconnecting directional lines show
the input/output relationships between the
network trees. As such, they provide a unique
representation of a system function that cannot
be seen in the hardware design data and software
listings.

 TITLE "PACK1_PROC1"
 MODULE "PACK1"
 XDEF PROC1_ENT
 PSEG

NORMAL_CONV EQU $4D000000
LWORD_SIGN EQU 31

PROC1_ENT:
 FMOVE.S (A1),FP1
 MOVE.L (A0),D0
 BPL.B PROC1_010

BCLR.L #LWORD_SIGN,D0
 NEG.L D0

PROC1_010:
MOVE.L (8,A1),D1
BPL.B PROC1_020

PROC1_060:
FADD.S (4,A1),FP1
FADD.S #NORMAL_CONV,FP1
FSUB.S #NORMAL_CONV,FP1
RTS
END

BCLR.L #LWORD_SIGN,D1
 NEG.L D1

PROC1_020:
CMP.L D1,D0
BGT.B PROC1_030

FSGLMUL.S (8,A1),FP1
BRA PROC1_060;

PROC1_030:

CMP.L D1,D0
BLT.B PROC1_050

FSGLMUL.S (12,A1),FP1
BRA PROC1_060;

PROC1_050:
FSGLMUL.S (A0),FP1

> < =

< > =

+ -

+ -

A
ss

y
0
1

P
A

C
K

1
M

O
D

U
LE

 -
 S

T
R

A
IG

H
T

 L
IN

E
 IN

T
E

R
P

O
LA

T
IO

N

--

24

1
of

 3

1
2

3
4

5
6

7
8

3
4

5
6

7
8

ABCD

1
2

S
IG

N
A

T
U

R
E

S
D

A
T

E

N
TC

C
A

 In
d

e
p

e
n

d
e

n
t

 D
e

s
ig

n
 A

n
a

ly
s
e

s
,

In
c
.

H
ou

st
on

, T
ex

as
(w

w
w

.id
a-

in
c.

co
m

)
N

T
C

 Q
A

C
A

 Q
A

S
H

E
E

T
N

E
T

W
O

R
K

 T
R

E
E

 N
O

. 0
1

R
ev

. N
o.

T
IT

LE
P

R
O

JE
C

T

ABCD

IC
A

 Q
A

IC
A

E
xe

c
S

LO
C

s=

4/
19

/0
1

S
. S

ch
m

al
z

R
ev

.

M
. M

al
on

e
4/

20
/0

1

S
. S

ch
m

al
z

4/
24

/0
1

Notes:

Figure 4 - Example Software Tree

 Forest development begins by first determining
the tree number for a safety critical output. All
the related network trees are identified using
electronic database cross-references, and a
graphical representation of their
interrelationships is developed. A forest is
created for each of the system’s functions. An
example forest is shown in figure 6.

 Clue Application : The third phase of the
analysis is the application of clues to the
topological network trees (and forests). A clue is

a visual key that directs the analyst to ask a set of
specific questions. The clues are subdivided into
hardware, software, hardware/software, system
categories which includes the topological,
functional and technological types. The clues
apply to both network trees and forests. These
visual keys are easily identifiable on the
topological network trees for the system and the
questions identify which of the following sneak
conditions that require further evaluation:

a. Sneak paths, which are latent paths that cause

1 of 1 POD1

12345678

345
6

78

A

B

C

D

1
2

SIG NAT U RES
DAT E

D R

Q C

 Independent Design
Analyses, Inc. Houston,

TexasQ A

Q E

SHEET TREE NO.TITLE PROJECT

A

B

C

D

Program Operations Diagram EXEC

EXEC
Program Operations Diagram

EXEC
SW 1

IGNITION
SW2

CHECK
DWELL
SW 11

CHECK
MODE
SW 15

INJECTOR
SW 20

THROT.
POSIT.
SW 40

FUEL
SW 39

PRESS.
SW 69

LIMITS
SW 79

CAL.
SW 95

HW
30

HW
55

SENSORS
SW 103

HW
88

TIMERS
SW 222

LOW
LIMIT

SW 310

HIGH
LIMIT

SW 278

ERROR
SW 368

HW
10

WATCHDOG

INTERRUPTS

INT. 1
SW 440

INT. 2
SW 500

INT. 3
SW 550

INT. 4
575

DIAGNOSTICS

DIAG. 1
SW 700

DIAG. 2
SW 740

DIAG. 3
SW 768

Figure 5 - Example POD

1 of 1

Data
Output

Data Mux

Data
Enable

Channel 1

Channel 0

Output
Buffer
Status

X:H142

X:H123

+5V
X:H2

+5V
X:H2

+5V
X:H2

+5V
X:H2

+5V
X: H2

+12V
X:H3

+12V
X:H3

X:H54

X:H57

X:H23

X:H24

X:H23

X:H40

X:H23

X:H41

NT H10

NT H20

NT H21

NT H61

NT H19

NT H48

Data
Output

+5V
X: H2

Counter

NT H27

+5V
X: H2

Data
Output
Ready

NT H63

+5V
X:H2

X:S11

X:S23

X:S5

Data Out
Routine

NT S20

Ready
Interrupt
Routine

NT S16

Output
Buffer

Routine

NT S10

F1Data Output Forest

12345678

345
6

78

A

B

C

D

1
2

SIG NAT U RES
DAT E

D R

Q C

 Independent Design
Analyses, Inc. Houston,

TexasQ A

Q E

SHEET TREE NO.TITLE PROJECT

A

B

C

D

Figure 6 - Example Forest

current or logic flow along an unexpected route,
resulting in unwanted functions or inhibiting a
desired function, not caused by component
failures;

b. Sneak timing, which results from
incompatible hardware or logic sequences and
can cause inappropriate system response;

c. Sneak indications, which provide false or
ambiguous indications of system operating
status;

d. Sneak labels, which result from a lack of
precise nomenclature or instructions on controls,
or operating consoles that can lead to erroneous
operator actions.

The analyst starts with the output of concern and
evaluates one device at a time and works back to
the inputs that affects that output. At each input,
a specific state is determined to give the required
sneak output. After all the input states are
determined, a check is made of their combined
states. If a sneak clue reveals that an undesirable
condition may exist, then the combination of
inputs required to provide the undesired
condition is then determined. These input
combinations could be either static, dynamic,
normal and/or abnormal. If a combination is
possible, then a discrepancy report is written. A
report is generated regardless of the probability
of a set of inputs occurring.

Reporting: There are three classes of
discrepancy reports: Sneak Condition Reports
(SCRs), Design Concern Reports (DCRs), and
Document Discrepancy Reports (DDRs). All
reports are dated, titled, and numbered for
indexing and tracking. Each report contains a
section at the bottom of the report form for the
customer to respond with their proposed action
to be taken. These responses and supporting
documentation will be evaluated, and the status
of the report will be updated along with the
report status tracking sheets, and the affected
network tree to close the quality assurance loop.

Sneak Condition Reports (SCRs): SCRs are used
to document sneak conditions uncovered during
the analysis. Each SCR describes the sneak
condition or conditions in detail and include an
illustration of the software logic where
applicable. Recommendations for corrective
action, as well as references to support the
findings are included.

Design Concern Reports (DCRs): A DCR is
prepared when undesirable conditions were
identified which were not sneak conditions, but
were of concern with respect to system
operation, safety, reliability, testability, or
maintainability. The DCRs identify potential
design problems or marginal design practices.
Examples of these concerns include critical
single failure points, misapplication of logic,
borderline timing conditions, unnecessary code,
and specification non-compliance. DCRs also
include those potential problems that cannot be
positively identified as an SCR or DDR. These
reports include illustrations of the actual
hardware and/or software logic where
appropriate. Recommendations for corrective
action, as well as references to support the
findings are also included.

DCRs have become an additional value of the
Sneak Analysis but are only reported as they are
discovered. The Sneak Analysis process is not
specifically directed to discover these conditions
since they are found more efficiently through
other methods.

Document Discrepancy Reports (DDRs): DDRs
are prepared for any documentation or drawing
discrepancies found during the analysis. Each
report identifies the document and explains the
error relative to the supporting documentation
referenced in the report. These reports identify
documentation problems that could affect
reliability, maintainability, safety, life cycle
costs, or future engineering changes. The Sneak
Analysis process is also not specifically directed
to discover these conditions as with DCRs,
however, if implemented as documented it may
result in a sneak condition.

Final Report: This report is prepared at the end
of the technical analysis and documents the
detailed technical approach, the results of the
analysis, and recommendations. All of the
SCRs, DCRs, and DDRs which were generated
during the analysis are included along with the.
report status tracking sheets which lists all
reports written along with the open/closed status
of each report.

Integrated Sneak Analysis with a
Hardware/Software Fault Tree Analysis (FTA)

Computer/software controlled systems can be
analyzed by constructing integrated

hardware/software fault trees that cover
hardware through pertinent software routines and
back through additional hardware. The
Hardware/Software Fault Tree Analysis (FTA) is
used to predict the most likely causes of a
predefined undesired event. The objective of an
FTA is to evaluate the possible hardware and
software causes of the top-level events. The
fault tree analysis uses a logical representation of
hardware and software failures/faults to obtain
the top-level undesired events. The logic used to
obtain the top level undesired event is developed
through groupings of logical gates which either
permit or inhibit the failures/faults up to the top
of the tree. The FTA thus produces a graphical
model of various parallel and sequential
failures/faults that result in the occurrence of the
undesired event. The tree continues down using
functional logic symbols describing the Boolean
relationships between failures of basic hardware
components and/or software commanded events.
The fault tree is developed down to the lowest
basic failure of the hardware and the software,
where a software failure mode is one in which
the function, for whatever reason, no longer
performs the design intent.

 Output reports from the analysis include
identification of single and multiple failures that
can cause the undesired event; the probability of
the undesired event happening for any
designated operation period; and a ranking of

contributing single and multiple failures with
their probability of being involved in the
undesired event.

When FTA and Sneak Analysis efforts are
integrated, the combined contribution of
component failures and sneak conditions can be
analyzed. The network trees and forests created
as part of the Baseline Analysis Tools during a
Sneak Analysis are used to convert the system’s
circuitry and software into the graphical fault
tree. This process is shown in figure 7.

The forests constructed during the Sneak
Analysis are used as an outline for constructing
the fault trees. For example, the forest
constructed for an output such as the one shown
previously in figure 6 acts as the structural
outline for the fault tree which involves the
output of data. The paths from right to left in the
forest leading back through the various network
trees are the same that would appear in the fault
tree from top to bottom.

The network trees provide the details necessary
to determine how the output event of that tree
occurs with different failures. Functions and
paths are clearly laid out on network trees and
forests, which avoids one of the most common
causes of errors in constructing fault trees. Such
as when high-level design data are used for
constructing fault trees, cause and effect

Figure 7 - Fault Tree AnalysisProcess Flow

Data
Review

Data
Review

Network Tree
and Forest

Construction

Network
Trees

Forests

Indexed
Data List

(IDL)

POD

Wirelists

Schematics

Parts Lists

System Docs.

SW Listings

System
Block
Diagrams

Data Review
Connects data end to end
Identifies missing data
Forms Indexed Data List

- Partitions Circuitry or Code into Topological patterns
- End-to-end Connectivity achieved through cross-references
- Trees grouped by function to form topological forest

Baseline Analysis Tools
System Decomposition achieved by
generating Network Trees, Forests and POD

Parts Specs
Sheets

Fault Tree
Development
And AnalysisFault Tree

Preparation

Basic Events
Location

Reference
Tables

Completed
Fault Trees

Groundrules
And

Assumptions

Fault Tree Preparation

Fault Tree
Final Report

Uses Baseline Analysis tools to construct fault
trees and identify basic events
Groundrules and assumptions state the analysis
guidelines and boundaries, define the top level
events, and any special exceptions

Customer Data

Defines Approach,
Scope and Project Data
Includes Fault trees,
reference table, NTs,
results and
Recommendations

relationships are sometimes left out because they
simply do not appear in the high-level design
data. Confusion and lack of understanding can
also result regardless of amount of detail in the
design data, because:
 1) Most of the data that represents a system are
organized for manufacturing purposes. These
data with their many crossed signal lines can
hamper complete understanding of all the ways
in which the system reflects a failure, and
2) Most systems are split up among multiple
contractors which separate the system and design
data into pieces. This division can separate data
so much that any detailed understanding of even
a single function is difficult at best.

The fault tree house event and inhibit gate are
used to show the combined effects of sneak
conditions and failures. A sneak condition may
affect only part of a system in a way, which
under normal circumstances, has no system
impact. However, when the sneak condition is
combined in the Fault Tree with some
combination of failures, the effect of the sneak
can be catastrophic. Also, the probability of the
top event may increase considerably when the
sneak condition is "turned on" using a “house”
event. Therefore, a sneak condition, which
would be considered as an acceptable risk for a
stand alone Sneak Analysis, now becomes a
safety critical event when viewed in conjunction
with fault conditions.

Integrated Sneak Analysis with a
Hardware/Software Failure Modes, Effects, and

Criticality Analysis (FMECA)

A Hardware/Software Failure Modes, Effects,
and Criticality Analysis (FMECA) is a
systematic way of evaluating the effects that a
particular software module or hardware
component failure has on a system. The
HW/SW FMEA identifies modules or functions
critical to system operations, which can be
targeted for redundancy, fault tolerance, or
additional compensating provisions. For the
Criticality Analysis, the failed components are
assigned a criticality number so that the design
team will know which components are most
critical to the safe and reliable operation of the
system.

This integrated approach uses the Baseline
Analysis Tools created during an Integrated
Sneak Analysis along with the understanding and
knowledge gained about the system. The forests

generated as part of the Baseline Analysis Tools
are used as a ready made map of all the system
effects and with minor modifications can
virtually be used directly as the Functional Block
Diagrams (FBD) needed to perform the HW/SW
FMEA. Also, since the forest blocks are made
up of individual network trees, which by
definition are single functions of the system, the
Reliability Block Diagrams (RBD) can be
created for all the highest system level
indentures.

The HW/SW FMECA considers the failure
modes of every hardware/software
module/function and component of the system in
an organized methodical manner using FBDs,
RBDs, the Software Sneak Analysis Program
Organization Diagram (POD), and the network
trees to identify the failure effects on system
operations. The FMECA worksheet database
can be automatically extracted from the Baseline
Analysis Tools cross-reference database. This
assures a complete, accurate, and cost-effective
basis for the analysis. The HW/SW FMECA
process is shown in Figure 8.

Using the cross-reference database of the
hardware and the software network tree
components provides all the necessary baseline
data to create the entries for the FMEA and CA
worksheets. A relational database easily uses
this input data to compile worksheets with the
corresponding failure modes at the appropriate
level of detail required for the analysis.
Additional reports can be tailored with the
database to fit special requirements. The
descriptions of all failure effects along with their
resultant criticality numbers can be compiled
into the worksheets for fast and convenient
review

The Software Failure Mode and Effects Analysis
(SWFMEA) part is used to identify weaknesses
in hardware/software interfaces of a system as a
step toward providing failure mitigation through
the use of software. A basic assumption is that a
software failure mode is one in which the
function, for whatever reason, no longer
performs the design intent.

The SW FMEA can identify the areas of
software failures that result in specific system
effects. An effective performance of the
HW/SW FMEA is assured by using a team with
hardware, software, and system analysis
expertise. In addition to the prime use of

identifying safety or reliability critical failure
modes and effects, the analysis can provide
rationale for changes in operations or design for
correcting and/or mitigating the effects of the
undesired failure modes. HW/SW FMECAs are
also beneficial in the preparation of test
procedures and troubleshooting failed systems.

Conclusions

An Integrated Sneak Analysis approach and the
use of the Baseline Analysis Tools provide a cost
effective and efficient method to improve safety
and reliability. Sneak Analysis finds problems
not found during design, simulation, test, or
other analyses. Thus, reducing the number of
problems during test and startup, and reducing
operational problems in the field. The Baseline
Analysis Tools provides the means of combining
the non-failure domain Sneak Analysis with
other failure domain analyses using significantly
less effort, time, and cost. This approach can
achieve coverage of the entire failure and non-
failure spectrum. Furthermore, the Baseline
Analysis Tools are also useful for evaluating
design changes, test planning, and
troubleshooting.

To maximize the benefits, the Integrated Sneak
Analysis should be performed to the detailed
component and software instruction level. Sneak
Analysis can also be performed at any level
necessary to achieve the desired results if limited
by time, scope, and/or cost. For example, it can
be performed individually on the hardware or

software, and then interfaced to the other.
Lastly, Sneak Analysis can reduce schedule risks
and costs by detecting errors before production
and testing.

References

1. MIL-STD-785A Notice 2 (5 August 1988),
Reliability Program Plan for Systems and
Equipment, Task 205.

Biography

Henry D. Valdez, BS EE, President, Independent
Design Analyses, Inc., P.O. Box 890541,
Houston, TX 77289-0541, USA, telephone -
(281) 488-8968, facsimile - (281) 992-7680, e-
mail - hdvaldez@ida-inc.com.

Mr. H. D. Valdez has been president of
Independent Design Analyses, Inc. since 1993.
He has over 21 years experience in performing
Hardware/Software Sneak Analysis (HW/SW
SA), Failure Mode Effects and Criticality
Analysis (FMECA), Traceability Analysis,
Hazard Analysis, Fault Tree Analysis, Reliability
Prediction, Worst Case Analysis, Reliability
Block Diagram Analysis (RBDA), and
Maintainability Analysis. His experience
includes Electronic Engine Control, Automatic
Flight Control, Aircraft Power Distribution,
advanced missile and weapon systems, and
Design Verification/Reliability Engineering. He
holds B.S. in Electrical engineering from Texas
A&I University

Figure 8 - Failure Modes Effects and Criticality Analysis Process Flow

Data
Review
Data

Review

Network Tree
and Forest

Construction

Network Trees

Forests

Indexed
Data List

(IDL)

POD

Wirelists

Schematics

Parts Lists

System Docs.

SW Listings

System
Block
Diagrams

Data Review
Connects data end to end
Identifies missing data

- Partitions Circuitry or Code into Topological patterns
- End-to-end Connectivity achieved through cross-references
- Trees grouped by function to form topological forest

Baseline Analysis Tools
System Decomposition achieved by
generating Network Trees, Forests and POD

Customer Data

Parts Specs
Sheets

Analysis

HW/SW
 FMEA

Preparation

Critical
Items
List

Completed
SW FMEA
Worksheets

Reliability Block
Diagrams (RBDs)

HW & SW FMEA
WorksheetsGroundrules And

Assumptions

HW & SW FMEA Preparation

 FMECA Final
Report

Defines Approach,
Scope and Project Data
Includes PODs, RBDs,
FMEAWorksheets, CIL,
and Recommendations

HW & SW FMEA Worksheets
Each failure mode analyzed from
local effects to system effects and
documented on the worksheets

Forms Indexed Data List

Uses Sneak Analysis Network Trees and Forests
to construct POD, RBDs and FMEA Worksheets
Groundrules and assumptions state the analysis
guidelines, define the failure modes, and any
special exceptions

Component
Failure
Rates

CA
Worksheets

Criticality
Matrix

Cross-Reference
Tables

